Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Adrian Fowkes and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.008 Å R factor = 0.042 wR factor = 0.102 Data-to-parameter ratio = 21.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(propane-1,2-diamine- $\kappa^2 N, N'$)zinc(II) dichloride dihydrate

In the title compound, $[Zn(C_3H_{10}N_2)_3]Cl_2 \cdot 2H_2O$, a complex three-dimensional network of $N-H \cdot \cdot \cdot O$, $N-H \cdot \cdot \cdot Cl$ and $O-H \cdot \cdot \cdot Cl$ hydrogen bonds helps to establish the crystal packing.

Received 21 March 2007 Accepted 27 March 2007

Comment

The title compound, (I), containing $[Zn(C_3H_{10}N_2)_3]^{2+}$ dications accompanied by charge-balancing chloride ions and water molecules of crystallization (Fig. 1), complements many crystal structures containing tris(1,2-diaminoethane)zinc(II) [or $Zn(C_2H_8N_2)_3^{2+}$] dications (e.g. Muralikrishna *et al.*, 1983; Nesterova *et al.*, 2006). However, (I) represents the first crystal structure of a tris-chelate of zinc with 1,2-diaminopropane.

In (I), the Zn cation is bonded to three N,N-bidentate amine molecules, resulting in a somewhat distorted ZnN_6 octahedron (Table 1). The mean Zn-N distance of 2.200 (8) Å in (I) compares with a mean Zn-N of 2.215 Å in $[Zn(C_2H_8N_2)_3]Cl_2\cdot 2(H_2O)$ (Muralikrishna *et al.*, 1983). The

Figure 1

The molecular structure of (I) showing 30% displacement ellipsoids (H atoms are drawn as spheres of arbitrary radius). Hydrogen bonds are indicated by double dashed lines.

© 2007 International Union of Crystallography

All rights reserved

Figure 2

The packing of (I), with the C-bound H atoms omitted for clarity and hydrogen bonds indicated by double dashed lines.

three chelating N-Zn-N bite angles in (I) are almost identical (Table 1). Three five-membered chelate rings occur in the dication in (I), each of which approximates to an envelope: the r.m.s. deviation, π , for the mean plane defined by Zn1-N1-N2-C1 is 0.090 Å, and the deviation from the plane, δ , for C2 is 0.617 (7) Å. For the other two chelate rings, equivalent values are: $\pi(Zn1-N3-N4-C4) = 0.048 \text{ Å}$ and $\delta =$ 0.632 (7) Å for C5 and π (Zn1-N5-N6-C7) = 0.056 Å and δ = 0.596 (7) Å for C8.

The complex in (I) is chiral; in the arbitrarily chosen asymmetric unit, atoms C2, C5 and C8 all have an S configuration, but the c-glide generates a racemic mixture of enantiomers in the crystal structure, consistent with the racemic starting amine. Considering only the backbone of the amine (i.e. C3, C6, C9 and all H atoms are neglected), then the Λ form of the tris-chelate complex (Piper, 1961) is apparent in the asymmetric molecule shown in Fig. 1. Again, symmetry generates an equal number of Λ and Δ species in the crystal structure.

A large number of N-H···Cl and N-H···O hydrogen bonds (Table 2) help to establish the crystal packing in (I). The water molecules form O-H···Cl bonds, resulting in distinctive closed loops of two water molecules and two chloride ions, with an $R_4^2(8)$ graph-set motif (Bernstein *et al.*, 1995). Together, the hydrogen bonds form a three-dimensional network (Fig. 2,) with Cl1 and Cl2 accepting six hydrogen bonds each.

Experimental

10 ml of 0.1 M ZnCl₂, 10 ml of 0.1 M 1,2-diaminopropane and a few drops of dilute HCl solution were mixed at 293 K in a Petri dish, resulting in a colourless mixture. Colourless blocks of (I) grew over the course of a few days at 293 K as the water evaporated.

Crystal data

$[Zn(C_{3}H_{10}N_{2})_{3}]Cl_{2}\cdot 2H_{2}O$	V = 1933.2 (2) Å ³
$M_r = 394.69$	Z = 4
Monoclinic, Cc	Mo Ka radiation
$a = 12.6384 (9) \text{ Å}_{1}$	$\mu = 1.56 \text{ mm}^{-1}$
b = 17.2427 (12) Å	T = 293 (2) K
c = 8.8721 (6) Å	$0.37 \times 0.18 \times 0.17 \text{ mm}$
$\beta = 90.777 \ (1)^{\circ}$	

Data collection

Bruker SMART1000 CCD	8264 measured reflections
diffractometer	3984 independent reflections
Absorption correction: multi-scan	3019 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1999)	$R_{\rm int} = 0.032$
$T_{\min} = 0.597, \ T_{\max} = 0.778$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.102$	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.97	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
3984 reflections	Absolute structure: Flack (1983),
185 parameters	1152 Friedel pairs
2 restraints	Flack parameter: 0.190 (17)

Table 1

Selected geometric parameters (Å, °).

Zn1-N5	2.177 (4)	Zn1-N2	2.207 (4)
Zn1-N3	2.193 (4)	Zn1-N1	2.207 (5)
Zn1-N4	2.206 (4)	Zn1-N6	2.211 (4)
N3-Zn1-N4	79.63 (16)	N5-Zn1-N6	79.36 (17)
N2-Zn1-N1	79.79 (17)		

Table 2			
Hydrogen-bond	geometry	(Å,	°)

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots Cl2^i$	0.90	2.62	3.457 (5)	155
$N1 - H2 \cdot \cdot \cdot Cl1$	0.90	2.54	3.419 (5)	166
$N2 - H3 \cdot \cdot \cdot Cl2^{ii}$	0.90	2.83	3.601 (5)	144
$N2 - H4 \cdots O1^{iii}$	0.90	2.30	3.185 (6)	166
$N3 - H11 \cdots O2^{i}$	0.90	2.27	3.133 (6)	162
$N3 - H12 \cdot \cdot \cdot Cl2^{iv}$	0.90	2.56	3.414 (5)	160
$N4 - H14 \cdot \cdot \cdot Cl1$	0.90	2.73	3.599 (5)	162
$N5-H21\cdots Cl1^{i}$	0.90	2.71	3.477 (5)	144
$N5 - H22 \cdot \cdot \cdot O1^{iii}$	0.90	2.34	3.143 (6)	148
N6-H23···Cl1 ⁱⁱ	0.90	2.69	3.499 (5)	150
$N6-H24\cdots Cl2^{iv}$	0.90	2.68	3.553 (5)	165
$O1 - H31 \cdot \cdot \cdot Cl1$	0.90	2.32	3.214 (5)	179
$O1 - H32 \cdot \cdot \cdot Cl2$	0.90	2.27	3.166 (5)	180
O2−H33···Cl1	0.90	2.26	3.164 (5)	180
$O2-H34\cdots Cl2$	0.90	2.29	3.186 (5)	180
Symmetry codes: (i) x	$z - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$	$-\frac{1}{2}$; (ii) $x - \frac{1}{2}$, -y	$x + \frac{1}{2}, z + \frac{1}{2}$; (iii) x -	$-\frac{1}{2}, y - \frac{1}{2}, z;$ (iv)

x - 1, y, z.

The crystal studied was a partial inversion twin with a 0.810 (17):0.190 (17) ratio of domains. The O-bound H atoms were positioned geometrically (O-H = 0.90 Å) to establish a reasonable hydrogen-bond network, and were refined as riding with $U_{iso}(H) =$ $1.2U_{eq}(O)$. The C- and N-bound H atoms were placed in idealized locations (C-H = 0.96-0.98 Å and N-H = 0.90 Å) and were refined as riding with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ or $1.5U_{eq}(\text{methyl C})$. The

methyl groups were allowed to rotate but not to tip, to best fit the electron density.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

AF thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Muralikrishna, C., Mahadevan, C., Sastry, S., Seshasayee, M. & Subramanian, S. (1983). Acta Cryst. C39, 1630–1632.
- Nesterova, O. V., Petrusenko, S. R., Dyakonenko, V. V., Shishkin, O. V. & Linert, W. (2006). Acta Cryst. C62, m281–m283.
- Piper, T. S. (1961). J. Am. Chem. Soc. 83, 3908-3909.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.